← Return to list of services

Microsurgery

Microsurgery is a general term for surgery requiring an operating microscope. The techniques in microsurgery have facilitated the ability to connect small blood vessels and nerves (typically 1 mm in diameter) which have allowed transfer of tissue from one part of the body to another and re-attachment of severed parts.


Free Tissue Transfer

Free tissue transfer is a surgical reconstructive procedure using microsurgery. A region of "donor" tissue is selected that can be isolated on a feeding artery and vein; this tissue is usually a composite of several tissue types (e.g., skin, muscle, fat, bone). Common donor regions include the rectus abdominis muscle, latissimus dorsi muscle, fibula, radial forearm bone and skin, and lateral arm skin. The composite tissue is transferred (moved as a free flap of tissue) to the region on the patient requiring reconstruction (e.g. traumatic tissue loss, congenital tissue absence, or bringing functional muscle to an area). The vessels that supply the free flap are anastomosed with microsurgery to matching vessels (artery and vein) in the reconstructive site. The procedure was first done in the early 1970s and has become a popular "one-stage" (single operation) procedure for many surgical reconstructive applications.


Replantation

Replantation is the reattachment of a completely detached body part. Generally replantation involves restoring blood flow through arteries and veins, restoring the bony skeleton and connecting tendons and nerves as required. Robert Malt and Charles Mckhann reported the first replantation two human upper extremities by microvascular means in 1964 with the first arm replanted in a child after a train injury in 1962 in Boston.  Initially, when the techniques were developed to make replantation possible, success was defined in terms of a survival of the amputated part alone. However, as more experience was gained in this field, surgeons specializing in replantation began to understand that survival of the amputated piece was not enough to ensure success of the replant. In this way, functional demands of the amputated specimen became paramount in guiding which amputated pieces should and should not be replanted. Additional concerns about the patients ability to tolerate the long rehabilitation process that is necessary after replantation both on physical and psychological levels also became important. So, when fingers are amputated, for instance, a replantation surgeon must seriously consider the contribution of the finger to the overall function of the hand. In this way, every attempt will be made to salvage an amputated thumb, since a great deal of hand function is dependent on the thumb, while an index finger or small finger might not be replanted, depending on the individual needs of the patient and the ability of the patient to tolerate a long surgery and a long course of rehabilitation.

However, if an amputated specimen is not able to be replanted to its original location entirely, this does not mean that the specimen is unreplantable. In fact, replantation surgeons have learned that only a piece or a portion may be necessary to obtain a functional result, or especially in the case of multiple amputated fingers, a finger or fingers may be transposed to a more useful location to obtain a more functional result. This concept is called "spare parts" surgery.